Question 1

1(g)	M1 (0.0150 × 20.0/1000 =) 0.0003(00) / 3.00 × 10 ⁻⁴ (mol)	5
	M2 (M1 × 2 = $3.00 \times 10^{-4} \times 2$ =) 0.0006(00) / 6.00 × 10 ⁻⁴ (mol)	
	M3 (M2 × 1000/25.0 = $6.00 \times 10^{-4} \times 1000 / 25.0 =$) 0.0240 (mol / dm ³)	
	M4 63 (g / mol)	
	M5 (M3 × M4 = 0.0240 × 63 =) 1.51(2) (g / dm ³)	

Question 2

2(e)(i)	basic	1
2(e)(ii)	the oxidation number of copper is +2	1
2(e)(iii)	M1 M_r of Cu(NO ₃) ₂ = 188 (1)	2
	$M2 = 0.0200 \times M1 = 0.0200 \times 188 = 3.76 g (1)$	
2(e)(iv)	M1 moles of gas formed = $0.0200 \times 5/2 = 0.05(00)$ (1)	2
	M2 volume = M1 \times 24.0 = 0.05(00) \times 24.0 = 1.2(0) (1)	
2(e)(v)	$2Al + 3CuO \rightarrow Al_2O_3 + 3Cu$	2
	M1 correct products (1)	
	M2 rest of equation correct (1)	

Question 3

3(d)	M1 (50.0 × 0.200 ÷ 1000 =) 0.01(1)	3
	M2 0.005(1)	
	M3 0.16(0)(1)	

Question 4

4(c)(iv)	0.005 / 5 × 10 ⁻³ (1)	3
	0.0025 / 2.5 × 10 ⁻³ (1)	
	0.125 (1)	

Question 5

5(c)(iv)	M1 mol of K = 2.34 / 39 = 0.06(00) (1)	3
	M2 mol of $H_2 = 0.06 / 2 = 0.03(00)$ (1)	
	M3 volume of $H_2 = 0.03 \times 24\ 000 = 720\ cm^3\ (1)$	

Question 6

6(e)(ii)	M1 $M_r \operatorname{Ca}(\operatorname{NO}_3)_2 = 164 \ (1)$	3
	M2 mol Ca(NO ₃) ₂ = 2.46 / 164 = 0.015(00) (1)	
	M3 $0.015(00) / 0.015(00) = 1$ 0.0600 / 0.015(00) = 4 and x = 4 (1)	